Geometric Nature of Relations on Plabic Graphs and Totally Non-negative Grassmannians
نویسندگان
چکیده
Abstract The standard parametrization of totally non-negative Grassmannians was obtained by A. Postnikov [45] introducing the boundary measurement map in terms discrete path integration on planar bicoloured (plabic) graphs disc. An alternative proposed T. Lam [38] systems relations at vertices such graphs, depending some signatures defined their edges. problem characterizing corresponding to cells left open [38]. In our paper we provide an explicit construction signatures, satisfying both full rank condition and total non-negativity property positroid cell. If each edge a graph $\mathcal G$ belongs oriented from boundary, then signature is unique up vertex gauge transformation. Such uniquely identified geometric indices (local winding intersection number) ruled orientation O$ ray direction $\mathfrak l$ G$. Moreover, combinatorial representation showing that every finite face just depends number white it. latter characterization Kasteleyn-type case bipartite [1, 7], has different statistical mechanical interpretation otherwise [6]. connection between solution Lam’s system value Postnikov’s established using generalization Talaska’s formula [51] particular, components vectors are rational weights with subtraction-free denominators. Finally, formulas for transformations under moves reductions amalgamations networks.
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولOn Second Geometric-Arithmetic Index of Graphs
The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.
متن کاملOn Third Geometric-Arithmetic Index of Graphs
Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.
متن کاملTotally magic cordial labeling of some graphs
A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2022
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnac162